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Recap  

GD / SGD is a first-order optimization method.

GD / SGD coverages to a stationary point. For convex objectives, this is all we need. For nonconvex objectives, it 
is possible to get stuck at local minimizers or “bad” saddle points (random initialization escapes “good” saddle 
points).

Newton's method is a second-order optimization method.

Newton's method has a much faster convergence rate, but each iteration also takes much longer. Usually for 
large scale problems, GD/SGD and their variants are the methods of choice.

Perceptron loss: 

Hinge loss: 

Logistic loss: 

ERM problems:

GD: 

SGD:  

Newton: 



MLE: find  that maximizes the probability  .

Generalization  

Finite sized function classes

Def: A function class  is finite-sized if  is finite

Realizability: These exists  

eg: Distribution overs  is uniform.

Theorem: let  be a function class with size . Let  for some . Suppose we get a training 
set  of size  s.t. i.i.d. from the data distribution  . Let

If  , then with probability  over  ,  ( for constants  )

 : the probability that the classifier makes mistake.

 : the probability that find bad classifier.

e.g. if  , then with  samples, with probability  ,  .

Proof: Note that there exists 

Let 

Goal 1: what is the probability of "getting tricked" by one fixed  ?

Consider some  :



Goal 2: what is the probability of being tricked by any  .

Union bound: 

The probability of ERM results in bad  .

Let  :

 , then  

  

Note that in this case the empirical risk  , since  (  always fits training set 
perfectly,  Generalization gap:  )

We assumed that the function class is finite-sized. Results can be extended to infinite function classes 
(such as separating hyperplanes).
We considered  loss. Can extend to real-valued loss (such as for regression).
We assumed realizability. Can prove similar theorem which guarantees small generalization gap without 
realizability (but with an  instead of  in the denominator). This is called agnostic learning.

Rule of thumb for generalization  

Suppose the functions  in our function class  have  parameters which can be set. Assume we discretize 
these parameters so they can take  possible values each. How much data do we need to have small 
generalization gap?

 ,  generalization gap is at most  with 

As illustrated below, Denominator  maybe  without realizability.

To guarantee generalization, make sure that your training data set size  is at least linear in the number  of 
free parameters in the function that you’re trying to learn.



Nonlinear basis  

What if a linear model is not a good fit?

1.Use a nonlinear mapping

2.Then apply linear regression

e.g. considers 

Model:  where 

Objective:

Similar least square solution:

e.g. Polynomial basis functions for 

Learning a linear model in the new space = learning an degree polynomial model in the original space.

Can I use a fancy linear feature map? 

No, it does nothing.



Overfitting and Regularization  

Overfitting and Underfitting  

 is underfitting the data,  is overfitting the data.

Underfitting: large training error, large test error.

Overfitting: small training error, large test error.

More complicated models  large gap between training and test error

Prevent Overfitting  

Method1: More data

It means smaller gap between training and test error.

Method2: Control model complexity

use cross-validation to pick hyper-parameter M in nonlinear regression.

Cross-validation: Idea is to do a three-way split in addition to training set / test set, and tune hyperparameters 
on a validation set.

Method3: Regularization

Intuitively, large weights  more complex model

How to make the weights small?

Regularized linear regression: new objective

Goal: find 



 is the regularizer ( ). It measures how complex the model  is, penalize 
complex models.

 is the regularization coefficient.  , no regularization,  ,  . i.e. control 
trade-off between training error and complexity.

Regularization helps with generalization. It's also a relatively simple knob to control.

If you don’t have sufficient data to fit your more expressive model, then ERM will overfit. Regularization helps 
with generalization.

So should it not be useful in many practical settings, where we have enough data?

In general, a viewpoint is that we should always be trying to fit a more expressive model if possible. We want 
our function class to be rich enough that we could almost overfit if we are not careful.

Since we’re often in this regime where the models we want to fit are more and more complex, regularization is 
very useful to help generalization (it’s also a relatively simple knob to control).

Understanding regularization  

Simple for  regularization, 

This is also known as Ridge Regression.

 and invertible  

Aside: Least-squares when  is not invertible

When  is not invertible,  is not defined.

This could happen when:

1. There are infinite many  s.t.  Let's look at this case.
2. no such  s.t.  .

1 can happen when  (does not have enough data to learn,  Is not full mark)

what does  regularization do here?

  regularization chooses  with smallest  s.t.  .

Intuition: what does inverting  do?



where  are eigenvalues.

Inverse i.e. just invert the eigenvalues:

Non-invertible  some eigenvalues are  ! 

One natural fix: add something positive

where  and  is the identity matrix. Now it is invertible.

A "Bayesian view" of  regularization  

Maximum a posteriori probability (MAP) estimation: A Bayesian generalization of maximum likelihood 
estimation (MLE).

Have training set ( )

If ,  .



MLE: find  which maximizing likelihood (i.e. )

It means that we have some prior of  to guide the result.

The solution is 

Bayesian view: A prior over  . Now we add priors knowledge for  :

Suppose our priors for  is  , Now we find the model which maximizes posteriors probability (MAP).

Posterior a Prior Likelihood.

 is same as  for  .

An equivalent form, and a "Frequentist view"  

“Frequentist” approach to justifying regularization is to argue that if the true model has a specific property, 
then regularization will allow you to recover a good approximation to the true model. We this view, we can 
equivalently formulate regularization as

where  is some hyper-parameter.

Finding the solution becomes a constrained optimization problem.

Choosing either  or  can be done by cross-validation.

Encouraging sparsity:  regularization  

Sparsity of : Number of non-zero coefficients in . Same as  .

 is not a norm, but features like  .

E.g.  is sparse.



Sparse models are a natural inductive bias in many settings. In many applications we have numerous possible 
features, only some of which may have any relationship with the label.

Sparse models may also be more interpretable. They could narrow down a small number of features which 
carry a lot of signal.

E.g.  is more interpretable than  .

For a sparse model, it could be easier to understand the model. It is also easier to verify whether the features 
which have a high weight have a relation with the outcome (they are not spurious artifacts of the data).

Data required to learn sparse model maybe significantly less than to learn dense model.
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